Package me.yixqiao.jlearn.genetic
Class Individual
- java.lang.Object
-
- me.yixqiao.jlearn.genetic.Individual
-
public class Individual extends java.lang.Object
Individual neural network.
-
-
Field Summary
Fields Modifier and Type Field Description protected int
layerCount
Number of layers (including input).java.util.ArrayList<Layer>
layers
Layers.double
score
Score (used for selecting).
-
Constructor Summary
Constructors Constructor Description Individual(java.util.ArrayList<Layer> layers)
Create a new individual.
-
Method Summary
All Methods Instance Methods Concrete Methods Modifier and Type Method Description void
applyBiasesIP(java.util.function.ToDoubleFunction<java.lang.Double> function)
Apply to each bias.void
applyWeightsIP(java.util.function.ToDoubleFunction<java.lang.Double> function)
Apply to each weight.Individual
cloneIndividual()
Clone the individual.Matrix
forwardPropagate(Matrix x)
Forward propagate.
-
-
-
Field Detail
-
layers
public final java.util.ArrayList<Layer> layers
Layers.
-
score
public double score
Score (used for selecting).
-
layerCount
protected int layerCount
Number of layers (including input).
-
-
Constructor Detail
-
Individual
public Individual(java.util.ArrayList<Layer> layers)
Create a new individual.- Parameters:
layers
- layers from population
-
-
Method Detail
-
forwardPropagate
public Matrix forwardPropagate(Matrix x)
Forward propagate.- Parameters:
x
- input matrix- Returns:
- output
-
applyWeightsIP
public void applyWeightsIP(java.util.function.ToDoubleFunction<java.lang.Double> function)
Apply to each weight.- Parameters:
function
- a function
-
applyBiasesIP
public void applyBiasesIP(java.util.function.ToDoubleFunction<java.lang.Double> function)
Apply to each bias.- Parameters:
function
- a function
-
cloneIndividual
public Individual cloneIndividual()
Clone the individual.- Returns:
- the clone
-
-