Package me.yixqiao.jlearn.layers
Class Layer
- java.lang.Object
-
- me.yixqiao.jlearn.layers.Layer
-
- All Implemented Interfaces:
java.io.Serializable
- Direct Known Subclasses:
Dense,InputLayer
public abstract class Layer extends java.lang.Object implements java.io.SerializableAbstract layer class.- See Also:
- Serialized Form
-
-
Constructor Summary
Constructors Constructor Description Layer()
-
Method Summary
All Methods Instance Methods Abstract Methods Modifier and Type Method Description abstract LayercloneLayer()Clone the layer, including weights and biases.abstract LayercloneSettings()Clone the settings.abstract MatrixforwardPropagate(Matrix x)Forward propagate a batch of input.abstract ActivationgetActivation()Get the activation of the layer.abstract MatrixgetErrors(Matrix prevErrors)Get backpropagated errors.abstract MatrixgetErrorsExpected(Matrix y)Get errors from output layer.abstract intgetOutSize()Get the output size of the layer.abstract voidinitLayer(int prevSize, Activation prevActivation)Create the layer.abstract voidsetOptimizers(Optimizer wOptimizer, Optimizer bOptimizer)Set optimizers for training the layer.abstract java.lang.StringtoString()Get a string representation.abstract voidupdate(Matrix errors)Update the layer after calculating errors.
-
-
-
Method Detail
-
initLayer
public abstract void initLayer(int prevSize, Activation prevActivation)Create the layer.- Parameters:
prevSize- size of the previous layerprevActivation- activation function or previous layer
-
setOptimizers
public abstract void setOptimizers(Optimizer wOptimizer, Optimizer bOptimizer)
Set optimizers for training the layer.- Parameters:
wOptimizer- optimizer for weightsbOptimizer- optimizer for biases
-
getActivation
public abstract Activation getActivation()
Get the activation of the layer.- Returns:
- the activation object
-
getOutSize
public abstract int getOutSize()
Get the output size of the layer.- Returns:
- the output size
-
forwardPropagate
public abstract Matrix forwardPropagate(Matrix x)
Forward propagate a batch of input.- Parameters:
x- input matrix- Returns:
- output matrix
-
getErrors
public abstract Matrix getErrors(Matrix prevErrors)
Get backpropagated errors.- Parameters:
prevErrors- errors from previous layer (layer after output)- Returns:
- matrix of errors
-
getErrorsExpected
public abstract Matrix getErrorsExpected(Matrix y)
Get errors from output layer.- Parameters:
y- expected outputs- Returns:
- matrix of errors
-
update
public abstract void update(Matrix errors)
Update the layer after calculating errors.- Parameters:
errors- calculated errors
-
toString
public abstract java.lang.String toString()
Get a string representation.- Overrides:
toStringin classjava.lang.Object- Returns:
- the string
-
cloneSettings
public abstract Layer cloneSettings()
Clone the settings.This will return a layer with the same size and activation, but with randomly initialized weights and biases.
- Returns:
- the clone
-
cloneLayer
public abstract Layer cloneLayer()
Clone the layer, including weights and biases.- Returns:
- the clone
-
-