A B C D E F G H I J L M N O P R S T U W X Y 
All Classes All Packages

M

main(String[]) - Static method in class me.yixqiao.jlearn.testing.Genetic
Run.
main(String[]) - Static method in class me.yixqiao.jlearn.testing.Iris
Run.
main(String[]) - Static method in class me.yixqiao.jlearn.testing.MNIST
Run.
main(String[]) - Static method in class me.yixqiao.jlearn.testing.MNISTSave
Run.
main(String[]) - Static method in class me.yixqiao.jlearn.testing.XOR
Run.
mat - Variable in class me.yixqiao.jlearn.matrix.Matrix
Contains the matrix itself.
Matrix - Class in me.yixqiao.jlearn.matrix
Matrix class and operations.
Matrix(double[][]) - Constructor for class me.yixqiao.jlearn.matrix.Matrix
Create a matrix from an existing 2d array of doubles.
Matrix(int, int) - Constructor for class me.yixqiao.jlearn.matrix.Matrix
Creates a new, empty matrix.
Matrix(int, int, Matrix.Init) - Constructor for class me.yixqiao.jlearn.matrix.Matrix
Create a new matrix using an Matrix.Init object.
Matrix.Init - Class in me.yixqiao.jlearn.matrix
Initialization methods for Matrix.
Matrix.Init.Empty - Class in me.yixqiao.jlearn.matrix
Init all with 0s.
Matrix.Init.Fill - Class in me.yixqiao.jlearn.matrix
Init all with a number.
Matrix.Init.Gaussian - Class in me.yixqiao.jlearn.matrix
Generate random numbers from the gaussian distribution to fill the matrix.
Matrix.Init.Uniform - Class in me.yixqiao.jlearn.matrix
Generate a uniform range of random numbers to fill the matrix.
MatrixMathException - Exception in me.yixqiao.jlearn.exceptions
Exception when executing matrix math.
MatrixMathException() - Constructor for exception me.yixqiao.jlearn.exceptions.MatrixMathException
Create an exception.
MatrixMathException(String) - Constructor for exception me.yixqiao.jlearn.exceptions.MatrixMathException
Create an exception.
me.yixqiao.jlearn.activations - package me.yixqiao.jlearn.activations
Various activations for each layer.
me.yixqiao.jlearn.datasets - package me.yixqiao.jlearn.datasets
Datasets and helper functions.
me.yixqiao.jlearn.exceptions - package me.yixqiao.jlearn.exceptions
Package containing exceptions.
me.yixqiao.jlearn.genetic - package me.yixqiao.jlearn.genetic
Genetic algorithms.
me.yixqiao.jlearn.initializers - package me.yixqiao.jlearn.initializers
Various initialization methods for weights.
me.yixqiao.jlearn.layers - package me.yixqiao.jlearn.layers
Various layers to use in the network.
me.yixqiao.jlearn.losses - package me.yixqiao.jlearn.losses
Various losses to use in training.
me.yixqiao.jlearn.matrix - package me.yixqiao.jlearn.matrix
Contains the Matrix class.
me.yixqiao.jlearn.metrics - package me.yixqiao.jlearn.metrics
Metrics to evaulate the model.
me.yixqiao.jlearn.models - package me.yixqiao.jlearn.models
Contains model architectures.
me.yixqiao.jlearn.optimizers - package me.yixqiao.jlearn.optimizers
Various optimizers for training.
me.yixqiao.jlearn.settings - package me.yixqiao.jlearn.settings
Global settings for JLearn.
me.yixqiao.jlearn.testing - package me.yixqiao.jlearn.testing
Some runnable classes for testing the library.
MeanSquaredError - Class in me.yixqiao.jlearn.losses
Mean squared error loss.
MeanSquaredError() - Constructor for class me.yixqiao.jlearn.losses.MeanSquaredError
 
Metric - Class in me.yixqiao.jlearn.metrics
Class for a metric.
Metric() - Constructor for class me.yixqiao.jlearn.metrics.Metric
 
metrics - Variable in class me.yixqiao.jlearn.models.Model.FitBuilder
Metrics to gauge model performance.
metrics(ArrayList<Metric>) - Method in class me.yixqiao.jlearn.models.Model.FitBuilder
Set metrics.
MNIST - Class in me.yixqiao.jlearn.testing
Train a network on the MNIST digits dataset.
MNIST() - Constructor for class me.yixqiao.jlearn.testing.MNIST
 
MNISTDigits - Class in me.yixqiao.jlearn.datasets
Class for the MNIST digits dataset.
MNISTDigits() - Constructor for class me.yixqiao.jlearn.datasets.MNISTDigits
 
MNISTSave - Class in me.yixqiao.jlearn.testing
Train a model on the MNIST dataset, then save it to a file and load it back to evaluate.
MNISTSave() - Constructor for class me.yixqiao.jlearn.testing.MNISTSave
 
model - Variable in class me.yixqiao.jlearn.testing.MNIST
Model.
Model - Class in me.yixqiao.jlearn.models
Neural network model.
Model() - Constructor for class me.yixqiao.jlearn.models.Model
Create a new model.
Model.FitBuilder - Class in me.yixqiao.jlearn.models
Builder class for fit operation.
Model.FitPrint - Class in me.yixqiao.jlearn.models
Thread to print progress when fitting.
Momentum - Class in me.yixqiao.jlearn.optimizers
Gradient descent with momentum.
Momentum(double, double) - Constructor for class me.yixqiao.jlearn.optimizers.Momentum
Create a new instance.
multiply(double) - Method in class me.yixqiao.jlearn.matrix.Matrix
Multiply each matrix element by a scalar.
multiply(Matrix) - Method in class me.yixqiao.jlearn.matrix.Matrix
Multiply by another matrix element by element.
multiplyIP(double) - Method in class me.yixqiao.jlearn.matrix.Matrix
Multiply each matrix element by a scalar, in place.
multiplyIP(Matrix) - Method in class me.yixqiao.jlearn.matrix.Matrix
Multiply by another matrix element by element, in place.
multiplyLR(double) - Method in class me.yixqiao.jlearn.optimizers.Adam
 
multiplyLR(double) - Method in class me.yixqiao.jlearn.optimizers.Momentum
 
multiplyLR(double) - Method in class me.yixqiao.jlearn.optimizers.Optimizer
Multiply the learning rate.
multiplyLR(double) - Method in class me.yixqiao.jlearn.optimizers.SGD
 
A B C D E F G H I J L M N O P R S T U W X Y 
All Classes All Packages