A B C D E F G H I J L M N O P R S T U W X Y
All Classes All Packages
All Classes All Packages
All Classes All Packages
M
- main(String[]) - Static method in class me.yixqiao.jlearn.testing.Genetic
-
Run.
- main(String[]) - Static method in class me.yixqiao.jlearn.testing.Iris
-
Run.
- main(String[]) - Static method in class me.yixqiao.jlearn.testing.MNIST
-
Run.
- main(String[]) - Static method in class me.yixqiao.jlearn.testing.MNISTSave
-
Run.
- main(String[]) - Static method in class me.yixqiao.jlearn.testing.XOR
-
Run.
- mat - Variable in class me.yixqiao.jlearn.matrix.Matrix
-
Contains the matrix itself.
- Matrix - Class in me.yixqiao.jlearn.matrix
-
Matrix class and operations.
- Matrix(double[][]) - Constructor for class me.yixqiao.jlearn.matrix.Matrix
-
Create a matrix from an existing 2d array of doubles.
- Matrix(int, int) - Constructor for class me.yixqiao.jlearn.matrix.Matrix
-
Creates a new, empty matrix.
- Matrix(int, int, Matrix.Init) - Constructor for class me.yixqiao.jlearn.matrix.Matrix
-
Create a new matrix using an
Matrix.Init
object. - Matrix.Init - Class in me.yixqiao.jlearn.matrix
-
Initialization methods for Matrix.
- Matrix.Init.Empty - Class in me.yixqiao.jlearn.matrix
-
Init all with 0s.
- Matrix.Init.Fill - Class in me.yixqiao.jlearn.matrix
-
Init all with a number.
- Matrix.Init.Gaussian - Class in me.yixqiao.jlearn.matrix
-
Generate random numbers from the gaussian distribution to fill the matrix.
- Matrix.Init.Uniform - Class in me.yixqiao.jlearn.matrix
-
Generate a uniform range of random numbers to fill the matrix.
- MatrixMathException - Exception in me.yixqiao.jlearn.exceptions
-
Exception when executing matrix math.
- MatrixMathException() - Constructor for exception me.yixqiao.jlearn.exceptions.MatrixMathException
-
Create an exception.
- MatrixMathException(String) - Constructor for exception me.yixqiao.jlearn.exceptions.MatrixMathException
-
Create an exception.
- me.yixqiao.jlearn.activations - package me.yixqiao.jlearn.activations
-
Various activations for each layer.
- me.yixqiao.jlearn.datasets - package me.yixqiao.jlearn.datasets
-
Datasets and helper functions.
- me.yixqiao.jlearn.exceptions - package me.yixqiao.jlearn.exceptions
-
Package containing exceptions.
- me.yixqiao.jlearn.genetic - package me.yixqiao.jlearn.genetic
-
Genetic algorithms.
- me.yixqiao.jlearn.initializers - package me.yixqiao.jlearn.initializers
-
Various initialization methods for weights.
- me.yixqiao.jlearn.layers - package me.yixqiao.jlearn.layers
-
Various layers to use in the network.
- me.yixqiao.jlearn.losses - package me.yixqiao.jlearn.losses
-
Various losses to use in training.
- me.yixqiao.jlearn.matrix - package me.yixqiao.jlearn.matrix
-
Contains the Matrix class.
- me.yixqiao.jlearn.metrics - package me.yixqiao.jlearn.metrics
-
Metrics to evaulate the model.
- me.yixqiao.jlearn.models - package me.yixqiao.jlearn.models
-
Contains model architectures.
- me.yixqiao.jlearn.optimizers - package me.yixqiao.jlearn.optimizers
-
Various optimizers for training.
- me.yixqiao.jlearn.settings - package me.yixqiao.jlearn.settings
-
Global settings for JLearn.
- me.yixqiao.jlearn.testing - package me.yixqiao.jlearn.testing
-
Some runnable classes for testing the library.
- MeanSquaredError - Class in me.yixqiao.jlearn.losses
-
Mean squared error loss.
- MeanSquaredError() - Constructor for class me.yixqiao.jlearn.losses.MeanSquaredError
- Metric - Class in me.yixqiao.jlearn.metrics
-
Class for a metric.
- Metric() - Constructor for class me.yixqiao.jlearn.metrics.Metric
- metrics - Variable in class me.yixqiao.jlearn.models.Model.FitBuilder
-
Metrics to gauge model performance.
- metrics(ArrayList<Metric>) - Method in class me.yixqiao.jlearn.models.Model.FitBuilder
-
Set metrics.
- MNIST - Class in me.yixqiao.jlearn.testing
-
Train a network on the MNIST digits dataset.
- MNIST() - Constructor for class me.yixqiao.jlearn.testing.MNIST
- MNISTDigits - Class in me.yixqiao.jlearn.datasets
-
Class for the MNIST digits dataset.
- MNISTDigits() - Constructor for class me.yixqiao.jlearn.datasets.MNISTDigits
- MNISTSave - Class in me.yixqiao.jlearn.testing
-
Train a model on the MNIST dataset, then save it to a file and load it back to evaluate.
- MNISTSave() - Constructor for class me.yixqiao.jlearn.testing.MNISTSave
- model - Variable in class me.yixqiao.jlearn.testing.MNIST
-
Model.
- Model - Class in me.yixqiao.jlearn.models
-
Neural network model.
- Model() - Constructor for class me.yixqiao.jlearn.models.Model
-
Create a new model.
- Model.FitBuilder - Class in me.yixqiao.jlearn.models
-
Builder class for fit operation.
- Model.FitPrint - Class in me.yixqiao.jlearn.models
-
Thread to print progress when fitting.
- Momentum - Class in me.yixqiao.jlearn.optimizers
-
Gradient descent with momentum.
- Momentum(double, double) - Constructor for class me.yixqiao.jlearn.optimizers.Momentum
-
Create a new instance.
- multiply(double) - Method in class me.yixqiao.jlearn.matrix.Matrix
-
Multiply each matrix element by a scalar.
- multiply(Matrix) - Method in class me.yixqiao.jlearn.matrix.Matrix
-
Multiply by another matrix element by element.
- multiplyIP(double) - Method in class me.yixqiao.jlearn.matrix.Matrix
-
Multiply each matrix element by a scalar, in place.
- multiplyIP(Matrix) - Method in class me.yixqiao.jlearn.matrix.Matrix
-
Multiply by another matrix element by element, in place.
- multiplyLR(double) - Method in class me.yixqiao.jlearn.optimizers.Adam
- multiplyLR(double) - Method in class me.yixqiao.jlearn.optimizers.Momentum
- multiplyLR(double) - Method in class me.yixqiao.jlearn.optimizers.Optimizer
-
Multiply the learning rate.
- multiplyLR(double) - Method in class me.yixqiao.jlearn.optimizers.SGD
All Classes All Packages