All Classes
-
All Classes Class Summary Exception Summary Class Description Accuracy Accuracy metric.Activation Abstract activation function.Adam Adam optimizer.CrossEntropy Cross entropy loss.Dataset Basic input output dataset.DatasetTT Dataset with a train and test.Dense Basic fully-connected layer.ElementwiseActivation Activation that is applied across all numbers the same.GaussianInit Gaussian distribution initialization.Genetic Run a genetic algorithm.He He initialization.Individual Individual neural network.Initializer Abstract initializer class.InputLayer Layer for input.Iris Train a network on the iris flowers dataset.JLSettings Global settings for JLearn.Layer Abstract layer class.LeakyReLU Leaky Rectified Linear Unit activation.Linear Most basic linear activation.Loss Class for loss function.Matrix Matrix class and operations.Matrix.Init Initialization methods for Matrix.Matrix.Init.Empty Init all with 0s.Matrix.Init.Fill Init all with a number.Matrix.Init.Gaussian Generate random numbers from the gaussian distribution to fill the matrix.Matrix.Init.Uniform Generate a uniform range of random numbers to fill the matrix.MatrixMathException Exception when executing matrix math.MeanSquaredError Mean squared error loss.Metric Class for a metric.MNIST Train a network on the MNIST digits dataset.MNISTDigits Class for the MNIST digits dataset.MNISTSave Train a model on the MNIST dataset, then save it to a file and load it back to evaluate.Model Neural network model.Model.FitBuilder Builder class for fit operation.Model.FitPrint Thread to print progress when fitting.Momentum Gradient descent with momentum.NeuralNetworkException Exception in neural network.Optimizer Abstract class for optimizers.Population Population of individuals.ReLU Rectified Linear Unit activation.SGD Gradient descent optimizer.Sigmoid Sigmoid activation.Softmax Softmax activation.Xavier Xavier/Glorot initialization.XOR Train a model to perform the XOR bitwise operation.